Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0352720230470010054
Journal of Ginseng Research
2023 Volume.47 No. 1 p.54 ~ p.64
Microbiota, co-metabolites, and network pharmacology reveal the alteration of the ginsenoside fraction on inflammatory bowel disease
Wang Dandan

Guo Mingkun
Li Xiangyan
Zhao Daqing
Wang Mingxing
Abstract
Background: Panax ginseng Meyer (P. ginseng) is a traditional natural/herbal medicine. The amelioration on inflammatory bowel disease (IBD) activity rely mainly on its main active ingredients that are referred to as ginsenosides. However, the current literature on gut microbiota, gut microbiota-host co-metabolites, and systems pharmacology has no studies investigating the effects of ginsenoside on IBD.

Methods: The present study was aimed to investigate the role of ginsenosides and the possible underlying mechanisms in the treatment of IBD in an acetic acid-induced rat model by integrating metagenomics, metabolomics, and complex biological networks analysis. In the study ten ginsenosides in the ginsenoside fraction (GS) were identified using Q-Orbitrap LC-MS.

Results: The results demonstrated the improvement effect of GS on IBD and the regulation effect of ginsenosides on gut microbiota and its co-metabolites. It was revealed that 7 endogenous metabolites, including acetic acid, butyric acid, citric acid, tryptophan, histidine, alanine, and glutathione, could be utilized as significant biomarkers of GS in the treatment of IBD. Furthermore, the biological network studies revealed EGFR, STAT3, and AKT1, which belong mainly to the glycolysis and pentose phosphate pathways, as the potential targets for GS for intervening in IBD.

Conclusion: These findings indicated that the combination of genomics, metabolomics, and biological network analysis could assist in elucidating the possible mechanism underlying the role of ginsenosides in alleviating inflammatory bowel disease and thereby reveal the pathological process of ginsenosides in IBD treatment through the regulation of the disordered host?flora co-metabolism pathway.
KEYWORD
Ginsenoside, Microbiota, Co-metabolites, Network pharmacology, IBD
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)